국내연구진이 폐수, 폐플라스틱에서 암모니아와 글리콜산을 생산하는 기술을 개발해 지속 가능한 탄소중립형 에너지 솔루션을 제시할 전망이다.
UNIST는 신소재공학과 조승호·송명훈 교수팀이 태양광 전기를 이용해 이산화탄소 배출 없이 암모니아를 생산할 수 있는 기술을 개발했다고 25일 밝혔다.
연구팀이 개발한 기술은 폐수 속의 질산 오염물을 전기로 반응시켜 암모니아로 바꾸는 기술이다. 암모니아 생산 과정에서 폐플라스틱 유래 글리콜산도 만들어져, 탄소 배출은 줄이고 폐플라스틱을 처리해 고부가 가치 물질을 생산할 수 있게 됐다.
암모니아는 전 세계에서 황산 다음으로 많이 생산되는 수요가 큰 무기화합물이지만 그 생산 과정에서 나오는 이산화탄소가 전체 이산화탄소 배출량의 1.4%를 차지할 정도 많다. 100년 묵은 암모니아 생산 공정인 하버·보슈법을 대체할 친환경 암모니아 생산 기술 개발이 필요한 이유다.
공동연구팀은 양극(cathode)에서는 암모니아를, 음극(anode)에서는 글리콜산을 태양광전기로 합성하는 광전기화학 시스템을 개발했다. 폐수 속 아질산염(NO2-)이 태양광전기 에너지를 받아 양극에서 환원돼 암모니아로 바뀌는 원리다. 전기화학시스템은 짝 반응이 일어나는데, 반응으로 음극에서는 에틸렌글리콜이 글리콜산으로 산화된다. 에틸렌글리콜은 폐플라스틱에서 추출되는 원료다.
이 시스템의 에너지 효율은 이제껏 보고된 최고의 효율인 52.3%(양극 단독 기준)를 기록했다. 암모니아를 생산하는 속도도 미국 에너지부가 제시한 태양광 암모니아 생산의 상용화 기준인 58.72 μmol/cm2h을 넘어서는 146 μmol/cm2h에 이르러 기존 최고기록보다도 46% 넘게 향상된 수치다.
연구팀은 폐수 속의 아질산염만을 선택적으로 환원시키는 촉매(RuCo-NT/CF)를 개발해 이 같은 고효율 시스템을 만들었다. 폐수 속에서는 질산염(NO3-)과 아질산염이 섞여 있는데, 아질산염으로 암모니아를 만드는 것이 훨씬 빠르고 에너지가 적게 든다. 또 시스템의 짝 반응으로 에너지 소모가 많은 산소 발생 반응이 아닌 글리콜산 발생 반응을 택해 필요한 전기에너지를 더 줄였다.
전기에너지를 제공하는 페로브스카이트 태양전지도 높은 광전류밀도와 내구성을 갖도록 설계했다. 광전류밀도가 증가할수록 암모니아 생산속도가 빨라진다.
연구팀은 기술의 상용화 가능성도 검증했다. 저준위 방사성 폐수를 모사한 전해질과 페트병 추출물을 이용한 전기화학시스템은 114μmol/cm2h 수준의 태양광 암모니아 생산 속도를 보였다.
송명훈 교수는 “상용화된 실리콘 태양전지보다 높은 효율을 갖는 페로브스카이트 태양전지 통해 이산화탄소 배출 없는 전기화학적 암모니아 생산 기술의 잠재력을 보여줬다는 점에서 의미 있는 연구”라고 말했다.
조승호 교수는 “태양광과 폐기물로 그린 암모니아와 고부가가치 글리콜산을 동시에 생산했다는 점에서 지속 가능한 탄소중립형 에너지 솔루션을 제시한 연구”라고 밝혔다.